Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.297
1.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710059

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Down-Regulation , Fibrosis , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Wistar , Vascular Endothelial Growth Factor A , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Electric Stimulation , Electric Stimulation Therapy/methods , Disease Progression , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Muscular Diseases/etiology
2.
Sci Rep ; 14(1): 9007, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637585

White striping (WS) is a myopathy of growing concern to the turkey industry. It is rising in prevalence and has negative consequences for consumer acceptance and the functional properties of turkey meat. The objective of this study was to conduct a genome-wide association study (GWAS) and functional analysis on WS severity. Phenotypic data consisted of white striping scored on turkey breast fillets (N = 8422) by trained observers on a 0-3 scale (none to severe). Of the phenotyped birds, 4667 genotypic records were available using a proprietary 65 K single nucleotide polymorphism (SNP) chip. The SNP effects were estimated using a linear mixed model with a 30-SNP sliding window approach used to express the percentage genetic variance explained. Positional candidate genes were those located within 50 kb of the top 1% of SNP windows explaining the most genetic variance. Of the 95 positional candidate genes, seven were further classified as functional candidate genes because of their association with both a significant gene ontology and molecular function term. The results of the GWAS emphasize the polygenic nature of the trait with no specific genomic region contributing a large portion to the overall genetic variance. Significant pathways relating to growth, muscle development, collagen formation, circulatory system development, cell response to stimulus, and cytokine production were identified. These results help to support published biological associations between WS and hypoxia and oxidative stress and provide information that may be useful for future-omics studies in understanding the biological associations with WS development in turkeys.


Muscular Diseases , Turkeys , Animals , Turkeys/genetics , Genome-Wide Association Study , Chickens/genetics , Muscular Diseases/metabolism , Phenotype , Meat/analysis
3.
Cells ; 13(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38607042

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.


Desmin , Animals , Desmin/chemistry , Desmin/metabolism , Intermediate Filaments/metabolism , Muscles/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation , Humans
4.
Commun Biol ; 7(1): 438, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600180

Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.


Muscle, Skeletal , Muscular Diseases , Humans , Muscle, Skeletal/metabolism , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/metabolism , RNA/metabolism
5.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566066

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Muscular Diseases , Muscular Dystrophy, Emery-Dreifuss , Humans , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nerve Tissue Proteins/metabolism , Muscular Diseases/metabolism , Cytoskeleton/metabolism , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Muscular Dystrophy, Emery-Dreifuss/pathology
6.
Sci Rep ; 14(1): 8871, 2024 04 17.
Article En | MEDLINE | ID: mdl-38632277

HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.


Cell Cycle , Induced Pluripotent Stem Cells , Muscular Diseases , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Line , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Cycle/genetics
7.
Toxicol Appl Pharmacol ; 485: 116900, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508403

One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-ß/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.


Dantrolene , Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Reactive Oxygen Species , Signal Transduction , Simvastatin , Smad4 Protein , Transforming Growth Factor beta , Ubiquinone , Ubiquinone/analogs & derivatives , Animals , Dantrolene/pharmacology , Dantrolene/therapeutic use , Ubiquinone/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Simvastatin/pharmacology , Smad4 Protein/metabolism , Rats , Transforming Growth Factor beta/metabolism , Diet, High-Fat/adverse effects , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Muscular Diseases/prevention & control , Drug Therapy, Combination , Oxidative Stress/drug effects , Rats, Wistar
8.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429495

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Muscular Diseases , Zebrafish , Animals , Humans , Male , Connectin/genetics , Connectin/metabolism , Muscle, Skeletal , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Zebrafish/genetics
9.
Exp Mol Med ; 56(4): 922-934, 2024 Apr.
Article En | MEDLINE | ID: mdl-38556544

Skeletal muscle aging results in the gradual suppression of myogenesis, leading to muscle mass loss. However, the specific role of cardiolipin in myogenesis has not been determined. This study investigated the crucial role of mitochondrial cardiolipin and cardiolipin synthase 1 (Crls1) in age-related muscle deterioration and myogenesis. Our findings demonstrated that cardiolipin and Crls1 are downregulated in aged skeletal muscle. Moreover, the knockdown of Crls1 in myoblasts reduced mitochondrial mass, activity, and OXPHOS complex IV expression and disrupted the structure of the mitochondrial cristae. AAV9-shCrls1-mediated downregulation of Crls1 impaired muscle regeneration in a mouse model of cardiotoxin (CTX)-induced muscle damage, whereas AAV9-mCrls1-mediated Crls1 overexpression improved regeneration. Overall, our results highlight that the age-dependent decrease in CRLS1 expression contributes to muscle loss by diminishing mitochondrial quality in skeletal muscle myoblasts. Hence, modulating CRLS1 expression is a promising therapeutic strategy for mitigating muscle deterioration associated with aging, suggesting potential avenues for developing interventions to improve overall muscle health and quality of life in elderly individuals.


Muscle, Skeletal , Muscular Diseases , Regeneration , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Muscular Diseases/metabolism , Muscular Diseases/etiology , Muscular Diseases/pathology , Muscular Diseases/genetics , Aging/metabolism , Muscle Development , Mitochondria/metabolism , Disease Models, Animal , Humans , Cardiolipins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Myoblasts/metabolism
10.
JCI Insight ; 9(4)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38385748

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Male , Adult , Female , Humans , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Mitochondria , Muscular Diseases/metabolism
11.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38402623

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Muscle Proteins , Muscular Diseases , Humans , Mice , Animals , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/metabolism , Taurochenodeoxycholic Acid/pharmacology , Oxidoreductases , Mice, Knockout
12.
Pflugers Arch ; 476(5): 797-808, 2024 May.
Article En | MEDLINE | ID: mdl-38368293

A common anthracycline antibiotic used to treat cancer patients is doxorubicin (DOX). One of the effects of DOX therapy is skeletal muscle fatigue. Our goal in this research was to study the beneficial effect of exercise on DOX-induced damaged muscle fibers and compare the effect of different exercise strategies (prophylactic, post- toxicity and combined) on DOX toxicity. Five groups were created from 40 male rats: group I, control group; group II, DOX was administered intraperitoneally for 2 weeks over 6 equal injections (each 2.5 mg/kg); group III, rats trained for 3 weeks before DOX; group IV, rats trained for 8 weeks after DOX; and group V, rats were trained for 3 weeks before DOX followed by 8 weeks after. Measures of oxidative damage (H2O2, catalase), inflammation (TNF-α), and glucose transporter 4 (GLUT4) expression on skeletal muscle were assessed. Also, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was estimated. Skeletal performance was evaluated by contraction time (CT), half relaxation time (1/2 RT), and force-frequency relationship by the end of this research. The current study demonstrated a detrimental effect of DOX on skeletal performance as evidenced by a significant increase in CT and 1/2 RT compared to control; in addition, H2O2, TNF-α, and HOMA-IR were significantly increased with a significant decrease in GLUT4 expression and catalase activity. Combined exercise therapy showed a remarkable improvement in skeletal muscle performance, compared to DOX, CT, and 1/2 RT which were significantly decreased; H2O2 and TNF-α were significantly decreased unlike catalase antioxidant activity that significantly increased; in addition, skeletal muscle glucose metabolism was significantly improved as GLUT4 expression significantly increased and HOMA-IR was significantly decreased. Exercise therapy showed significant improvement in all measured parameters relative to DOX. However, combined exercise therapy showed the best improvement relative to both pre-exercise and post-exercise groups.


Doxorubicin , Glucose Transporter Type 4 , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Male , Rats , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Catalase/metabolism , Doxorubicin/toxicity , Doxorubicin/adverse effects , Glucose Transporter Type 4/metabolism , Hydrogen Peroxide/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Oxidative Stress/drug effects , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
13.
Sci Rep ; 14(1): 3450, 2024 02 11.
Article En | MEDLINE | ID: mdl-38342952

This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.


Muscular Diseases , Myositis , Poultry Diseases , Animals , Chickens/genetics , Chickens/metabolism , Lipid Metabolism/genetics , Muscular Diseases/genetics , Muscular Diseases/veterinary , Muscular Diseases/metabolism , Gene Expression Profiling , Pectoralis Muscles/pathology , Myositis/metabolism , Lipids , Poultry Diseases/genetics
14.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338790

Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.


Muscle Fibers, Skeletal , Muscular Diseases , Humans , Muscle Fibers, Skeletal/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Homeostasis
15.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article En | MEDLINE | ID: mdl-38396828

The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.


Muscular Diseases , Sarcoplasmic Reticulum , Mice , Male , Animals , Sarcoplasmic Reticulum/metabolism , Calcium/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Aging/metabolism , Muscular Diseases/metabolism
16.
Poult Sci ; 103(1): 103179, 2024 Jan.
Article En | MEDLINE | ID: mdl-37931400

Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.


Muscular Diseases , Poultry Diseases , Humans , Animals , Pectoralis Muscles/metabolism , Chickens/physiology , Collagen Type IV/metabolism , Poultry Diseases/genetics , Poultry Diseases/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/veterinary , Muscular Diseases/metabolism , Meat/analysis
17.
J Cachexia Sarcopenia Muscle ; 15(1): 55-66, 2024 Feb.
Article En | MEDLINE | ID: mdl-38064183

BACKGROUND: Muscle aging is associated with a consistent decrease in the ability of muscle tissue to regenerate following intrinsic muscle degradation, injury or overuse. Age-related imbalance of protein synthesis and degradation, mainly regulated by AKT/mTOR pathway, leads to progressive loss of muscle mass. Maintenance of anabolic and regenerative capacities of skeletal muscles may be regarded as a therapeutic option for sarcopenia and other muscle wasting diseases. Our previous studies have demonstrated that BIO101, a pharmaceutical grade 20-hydroxyecdysone, increases protein synthesis through the activation of MAS receptor involved in the protective arm of renin-angiotensin-aldosterone system. The purpose of the present study was to assess the anabolic and pro-differentiating properties of BIO101 on C2C12 muscle cells in vitro and to investigate its effects on adult and old mice models in vivo. METHODS: The effects of BIO101 on C2C12 differentiation were assessed using myogenic transcription factors and protein expression of major kinases of AKT/mTOR pathway by Western blot. The in vivo effects of BIO101 have been investigated in BIO101 orally-treated (50 mg/kg/day) adult mice (3 months) for 28 days. To demonstrate potential beneficial effect of BIO101 treatment in a sarcopenic mouse model, we use orally treated 22-month-old C57Bl6/J mice, for 14 weeks with vehicle or BIO101. Mice body and muscle weight were recorded. Physical performances were assessed using running capacity and muscle contractility tests. RESULTS: Anabolic properties of BIO101 were confirmed by the rapid activation of AKT/mTOR, leading to an increase of C2C12 myotubes diameters (+26%, P < 0.001). Pro-differentiating effects of BIO101 on C2C12 myoblasts were revealed by increased expression of muscle-specific differentiation transcription factors (MyoD, myogenin), resulting in increased fusion index and number of nuclei per myotube (+39% and +53%, respectively, at day 6). These effects of BIO101 were like those of angiotensin (1-7) and were abolished with the use of A779, a MAS receptor specific antagonist. Chronic BIO101 oral treatment induced AKT/mTOR activation and anabolic effects accompanied with improved physical performances in adult and old animals (maximal running distance and maximal running velocity). CONCLUSIONS: Our data suggest beneficial anabolic and pro-differentiating effects of BIO101 rendering BIO101 a potent drug candidate for treating sarcopenia and possibly other muscle wasting disorders.


Muscular Diseases , Sarcopenia , Mice , Animals , Sarcopenia/pathology , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Atrophy/pathology , TOR Serine-Threonine Kinases/metabolism , Myoblasts/metabolism , Transcription Factors/metabolism , Transcription Factors/pharmacology
18.
Poult Sci ; 103(1): 103203, 2024 Jan.
Article En | MEDLINE | ID: mdl-37980759

Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.


Muscular Diseases , Satellite Cells, Skeletal Muscle , Animals , Chickens , Cell Differentiation , Hypoxia/veterinary , Muscular Diseases/veterinary , Muscular Diseases/metabolism , Cell Proliferation , Satellite Cells, Skeletal Muscle/metabolism , Muscle Development , Oxygen/metabolism , Muscle, Skeletal/physiology
19.
Ann Clin Transl Neurol ; 11(3): 577-592, 2024 Mar.
Article En | MEDLINE | ID: mdl-38158701

OBJECTIVE: Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS: Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS: RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION: The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.


Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Muscular Diseases , Humans , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Amyotrophic Lateral Sclerosis/genetics , Nuclear Pore/metabolism , Nuclear Pore/pathology , Muscle, Skeletal/metabolism , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Muscular Diseases/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
20.
FASEB J ; 38(1): e23400, 2024 01.
Article En | MEDLINE | ID: mdl-38156416

Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.


Muscular Diseases , Tropomyosin , Actins/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation , Myosins/genetics , Myosins/metabolism , Tropomyosin/chemistry , Animals
...